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I. INTRODUCTION

Systems are modelled in order to understand and explain them better

and as a prelude to action. Aircraft dynamics, for example, may be
identified so that better designs can be made, or so that adaptive control
actions can be taken. Our attention in this study has been directed at

aspects of estimation and identification that are connected with system

understanding.

This study has been aimed at three problem areas: multistage
modeling, estimation, and identification algorithms for dynamical systems;
parametric identification algorithms for estimation of input-output

response; and, state estimation and parameter identification for a new

class of models -- causal functional equations -- which describe wave

propagation in layered media systems.

The first problem is concerned with developing estimation algorithms
both for parameter and state estimation that are recursive in the dimen-
sion of the parameter vector or state vector. Such algorithms will find
utility in system modeling work, where model dimension is often a variable.

The second problem is concerned with identifying a linear system's
input-output response rather than a parametric representation for the
sytem. The basic idea is that parameter estimation techniques often give

very poor estimates of a system's response; hence, we are interested in
new algorithms that lead to good estimates of system input-output response.

The third problem is concerned with developing whole new theories of
state estimation and parameter identification for causal functional equa-
tions. These equations are continuous-time, linear, time-invariant and

contain multiple time delays. They do not contain derivatives or integrals,
and no literature apparently exists for them. Causal functional equations

are applicable to diverse areas such as reflection seismology, transmission

lines, speech processing, optical thin coatings and EM problems.

This study, performed from January 1, 1975._M=br79
led to 32 publications. I
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II. SUIMMARY OF RESEARCH EFFORT

We sumarize our research activities for the three problem areas

mentioned in Section I in Paragraphs A, B, and C below. Some tangential

results are also sutmarized in Paragraph D.

A. Multistage Algorithms

1. Multistage least-squares parameter estimation algorithms have

been extended to multistage weighted least-squares algoritms [1]. This

extension permits one to do multistage unbiased minimum variance estima-

tion of parameters in a linear model, which broadens the multistage

philosophy to more than one estimation technique.

2. Multistage least-squares algorithms have been applied to a

number of interesting problems associated with identification of a sampled

impulse response [1].* Suppose a test signal, u(t), is applied at t=t 0

to a linear, time-invariant, causal, but unknown system whose output,

y(t), and input are measured. The unknown impulse response is to be

identified using sampled values of u(t) and y(t). For such a system

It
y(tk) fk w()u(tk - ')dT ; (1)

to

or, if we assume that (a) w(t) m0 for all t z tw, (b) [t o , tw] is

divided into N equal intervals, each of width AT, and (c) for

.rEct 11, t1), w([) - w(t1 .1), and u(t - T) -u(t - ti1 ), then

*Publications under this grant are listed in Section III. References

(e.g.[A] are listed at the end of the report.
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N
At k) -1W(t.1)u(t k .-1 1)  (2)

II
where

w 1(ti 1) a AT w(t1-1) .(3)

It is straightforward to identify the N unknown parameters wl(t 0),

wl(tl),..., wl(tN1) via least-squares; however, for N to be known tw
must be accurately known and AT must be chosen Judiciously.

In actual practice t. is not known that accurately so that N may have

to be varied. Multistage least-squares estimators (LSE's) have been used

to handle this situation in a computationally efficient manner.

Sometimes, AT can be too coarse for certain regions of time, in which

case significant features of w(t), such as a ripple, may be obscured. In

this situation, we would like to "zoom-in" on those intervals of time and

re-discretize y(t) just over those intervals, thereby adding more terms to

Y(tk). We have shown how to use multistage LSE's to zoom-in on regions of

time in a very effective manner.

3. Computational requirements for multistage LSE's have been studied

[2]. Our approach was to count the total number of multiplications asso-

ciated with our different multistage algorithms. Total number of multipli-

cations is a good indicator of total computation time. We have compared

the computation time requirements for our multistage algorithms with one-

stage (conventional) LSE algorithms from two different points of view.

In order to illustrate the different points of view, recall that by

means of n-stage LSE's it Is possible to simultaneously obtain least-

squares estimates for parameters in n models. According to the first point

of view we treat the n-stage LSE as a recursive procedure for obtaining

just the least-squares estimate of n-vector 0; hence, the computation time
A

required to obtain e by means of the n-stage LSE should be compared with
A

the computation time required to obtain e by means of a one-stage LSE. By

this first point of view we are comparing computation time requirements on

an absolute basis. According to the second point of view we treat the

-3-



n-stage LSE as a recursive procedure for obtaining least-squares estimates

for n. different linear models; hence, the computation time required to

obtain 0 by means of the n-stage LSE should be compared with the computa-

tion time required to obtain least-squares estimates for each one of the

n linear models, each estimate being obtained by a one-stage LSE. By the

second point of view we are comparing computation time requirements on the

basis of equal information.

The following conclusions have been reached (quantitative conclusions

are given in [2]): For batch data processing, it is always more efficient

to use multistage LSE's. This is true both on an absolute and equal infor-

mation basis. For sequential data processing, conclusions depend on

whether we choose to use a "standard" LSE or a "stabilized" LSE. Often,

for purposes of accuracy, one must use a stabilized LSE, in which case it

is again always more efficient to use multistage LSE's. If, on the other

hand, accuracy is not so important, then it is usually more efficient to

use one-stage standard LSE's than multistage standard LSE's.

4. Friedland's [A] bias filtering technique, which is an example of

a multistage Kalman/Bucy (K/B) filter for a very special plant.(or transi-

tion) matrix and process covariance matrix, has been extended to the

following class of nonlinear systems [3]:

i(t) - fx(t), t] + + w(t) (4a)

y(t) a hLX(t), t] + A2b + v(t). (4b)

In this system, states x enter nonlinearly; but, biases enter linearly.

Signals w(t) and v(t) are zero mean white noise processes.

5. In our efforts to generalize Friedland's [A] decomposition to the

situation of a bias vector described by a first-order Markov process, we

have had to rederive his decomposition by a route different from the one

taken by him. His approach was to augment the bias states to the dynamical

x states and to show that the Riccati equation for the augmented system
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could be decomposed so that x(k) can be computed via the following

equation:

x(k) -Z(k) + Vx(k)bk(k) (5)x

where 'j(k) is the bias-free estimate of x(k), computed as if no biases
A

were present, b(k) is the optimum estimate of the bias, and Vx(k) is a

matrix, that is computed recursively, which blends the estimates of x(k)
and b(k) together to give x(k), the bias corrected estimate of x(k).

Our approach [4,5], which is constructive in nature, is to assume the

existence of the decomposition in Eq. (5), for which we require that
A A

x(k) and k(k) be unbiased estimators of x(k) and k(k), and, that the

trace of the estimation error covariance matrix for x(k) be minimum.
A

We then demonstrate that the resulting x(k) is indeed the minimum

variance estimator of x(k); hence, our assumed decomposition is valid.

Besides obtaining all of Friedland's results (and, giving some new

physical meaning to some of the matrix quantities such as Vx(k)), we

also show that b(k) in Eq. (5) is a minimum variance estimator of b for

an auxiliary parameter estimation problem; hence, we have demonstrated

that it is possible to add or remove elements from b so that x(k) and

the modified bias vector can be reestimated without having to redo all
the calculations. This is important in applications where the bias

states are used to model constant instrumentation error sources [B]; for,

it can happen that not all of theerror sources are significant, so that
some of them should be deleted from the final filter, or, that signifi-

cant error sources may have been initially neglected, and should be

included in the final filter.

6. Washburn [6,7] has generalized Friedland's [A] bias estimation

technique to partitioned dynamical systems. In the general case, the

calculations are of the dimension of the overall system, so that, except

for some special but important cases, there are no computational advan-

tages to the multistage approach. Those special cases, where there does

appear to be computational advantages for the multistage approach are:

colored noise and weak coupling between the partitioned systems.

* ---S-



The general results are important in themselves, since they provide

the theory for a particular decomposition of the optimal state estimator

for a system of possibly large dimension (i.e., a large scale system).

This decomposition gives added insight into the structure and performance

of the minimum variance unbiased estimator. In addition, the methodology
of proof for this multistage decomposition provides a means for investi-

gating other decompositions of interest.

B. Identification From Input/Output Data

1. Several existing identification algorithms have been analyzed

to determine how well the resulting models match the input/output

response of the true system, especially with respect to stability. It

has been found that in the identification of autoregressive processes

the standard least-squares algorithm, (which is also maximum likelihood)

gives good results. This would be expected from the properties of

maximum likelihood methods, and the inherent numerical robustness of the

algorithm. This robustness is due to the fact that a Toeplitz matrix is

inverted which is generally positive definite and well-conditioned.

However, in the identification of autoregressive moving average processes

a number of algorithms first estimate the Markov parameters (e.g., [C],

[D) and then invert the associated Hankel matrix. It has been found

that these algorithms do not perform well in their reproduction of the

input/output response for two reasons. Firstly, because only a small

number of Markov parameters is used, there is high sensitivity to errors,

and secondly, the Hankel matrix may become almost singular (Glover [E]).

These results have been verified by simulation for the method given in [C].

2. Preliminary work on input design for identification [8] has

indicated that the choice of design criterion can be critical. An

illustrative example was produced where the trace of the information

matrix was maximized subject to an input energy constraint as follows.

There are two identifiable parameters to be Identified and the available

input energy must be shared between both. The above criterion however

indicated that all the input energy should be channelled into identifying

-6-
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the more easily Identified parameter. This resulted in one parameter
being. identified very well and no information being obtained on the other
parameter, which is clearly not desired.

3. Several deterministic identification problems have been solved
[9]. The general problem is: given a finite set of finite length input/
output sequences from an unknown discrete-time system, derive a minimal

order linear dynamical model with appropriate initial conditions that

would produce the observed input-output sequences. Previous approaches

to this problem (e.g. [F]) have been based on involved matrix manipula-

tions and have required certain restrictive assumptions on the data. The

new method is based on the geometric theory of linear systems and is

completely general, in that an arbitrary number of input/output sequences

of arbitrary length are allowed, and the initial conditions can be either

zero or free. The resulting algorithm Is simply stated in terms of

recursive subspace equations and includes tests for the identifiability

of the data. It has further been shown that several other problems in
linear systems (e.g. observers and exact model matching) can be formulated
within the same framework.

4. Substantial progress has been made in implementing and evaluating

approximate realization methods (i.e., the approximate realization of

given impulse response sequence by a low order linear system). Given

exact data there are a large number of different algorithms that will
.produce exact realizations, and given approximate data the same methods

can be approximately implemented to produce approximate realizations.

This is similar in spirit to an equation error method and a selection of

six approximate realization methods of this type have been implemented

and have been evaluated using experimental impulse response data.

C. Modeling, Estimation, and Identification of Layered Media Systems

1. We have developed time-domain state space models for lossless

layered media which are described by the wave equation and boundary

conditions [10-13]. Our models are for non-equal one-way travel times;

hence, they are more general than existing models of layered media which
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are usually for layers of equal one-way travel times. Full state models,

which. Involve 2K states for a K-layer media systems, as well as half-

state models, which involve only K states have been developed and related.

Certain transfer functions, which appear in the geophysics literature in

connection with models of layered media with equal travel times have been

generalized to the situation of non-equal travel times. Our state space

4 models represent a new class of equations, causal functional equations,

for which we have not been able to find any literature. These equations

are continuous-time, linear, and contain multiple time-delays. Their

impulse response is an infinite sequence of non-uniformly spaced impulse

functions.

2. We have proven the truth [11,14] of the following decomposition

of the solutions to the lossless wave equation in layered media: the

complete output from a K-layer media system, which is comprised of the

superposition of primaries, secondaries, tertiaries, etc., can be obtained

from a single state space model of order 2K -- the complete model -- or

from an infinite number of models, each of order 2K, the output of the

first of which is just the primaries, the output of the second of which
is Just the secondaries, etc. This decomposition of the solution to the

lossless wave equation into physically meaningful constituents (i.e.,

primaries, secondaries, etc.) is called a canonical Bremmer Series de-

composition, after Bremmer, who in 1951 established a similar decomposi-
tion [G].

In many geophysical situations, where reflection coefficients are

quite small, the decomposition can be truncated after secondaries or

tertiaries; hence, it also represents a way to approximate the solution

to the wave equation.

We have made connections [15] between our state space models and the

integral equations given by Bremmer [G] for generating the partial
: residuals.

We have shown how to go from Bremmer's integral equations to our

state equations by assuming a medium with a wave number that has finite

jumps (discontinuities) which occur at the interfaces and that is constant

within a layer. These assumptions for wave number are associated with

what we mean by a horizontally layered homogeneous earth.

-8 -lr 11111 !I111111,- 1



We have also demonstrated that Bremmer's integral equations can be
obtained by the W. K. B. method which gives approximate solutions to

second-order differential equations [H]. This justifies earlier claims

[11,14] that the Bremer series decomposition can be used to approximate
the complete solution to the lossless wave equation by truncating that

decomposition after a small number of terms.

3. We have developed [16] a general theory for describing reinforced

events between multiple reflections in lossless layered media, which are

described by the wave equation and boundary conditions (e.g., horizontally

stratified nonabsorptive earth with vertically traveling plane compres-

sional waves).
Retnforcements occur whenever two or more multiple reflections from

different paths inside the media arrive at the surface at the same time

so that they add (positively or negatively) together. Those reinforce-

ments occur regardless of what the travel time is in each layer, and
distort the appearance of a seismogram; for, they lead one to believe that

a significant event has occurred by the appearance of a large amplitude

segment of the seismogram, whereas, in reality, that large event is a sum

of (many) smaller events.

Our general theory is applicable to a K-layer media system with non-

uniform travel times and gives information about the exact location in

time, number, and amplitude of reinforced events for n-aries (i.e.,

secondaries, tertiaries, etc.), where n = 1, 2, 3 .... The starting

point for the development of this theory is Mendel's Bremmer series
decomposition [11,14] and the operator description of state space models

of layered media [12] by means of which n-ary reflections (where n - 1,

2, 3, ...) are generated and analyzed separately and related to each

other. The two most significant multiple reflections, secondaries, and
tertiaries, have been studied extensively. We have demonstrated that

not only do reinforcements occur between the same kind of multiple

reflections (e.g., between secondaries), but that reinforcements also

occur across different kinds of multiple reflections (e.g., between

secondaries and tertiaries).

-9-
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4. Because our causal functional state space models for a layered
media system represent a new class of equations, we have had to study the
computer simulation of these equations. Two computational methods have
been considered [17]. In the first approach, we discretized the time

axis and inserted states of intermediate delays, to arrive at a set of

standard finite-difference equations. For our particular system, matrix

multiplications can be reduced to simple scalar multiplications. In the

second approach, we defined mapping rules for the transformation of states

at an interface, and kept a state reference table for look-up and branching.

The procedure is similar to ray-tracing. Several experiments have been

performed to show the trade-off between storage requirement and CPU time-

spent for the two methods.

5. We have developed a procedure for extracting reflection coeffi-

cients from noisy data [18] which we feel is a substantial generalization
of similar procedures which have been reported in the literature ([I] for

example). Associated with these earlier procedures are Standard Assump-
tions and Steps which include requirements that the data be noise free
and that the observed seismic data be deconvolved. Our procedure avoids
these restrictive requirements. Furthermore, our procedure totally avoids

the concepts of z-transforms, minimum phase, spectral factorization, etc.,

which appear in the literature on this subject.

6. An important special case of a causal functional equation (CFE),

occurs when all one-way travel times are equal. In this case the uniform

CFE (UCFE) is

x(t + T) A x(t) + b m(t) (6)

with initial values

x(a) a E [0, r) (7)

Recognizing that any time t (t E R) can be expressed as

t a t' + Mr where t'E ; and M is an integer (8)

-10-



we have shown [19] that the solution to UCFE (6) is

k  -

x t' + (k+l)T, = Ak+l x(t') + m(t' + it) (9)
1.0

where t' Er, k a 0, 1, 2, ... , and t - t' + (k+l)r.

Equation (9) explicitly shows how the state at any time t t' + (k+l)T
depends on an initial condition x(t') and the input m. It is of interest to

note that x(t) depends only on a single element of the initial values x(a)

(a E .r) namely x(t'), and a finite number of point values of m. This shews
that the solution to the uniform causal functional state equation, although

continuous-time in nature, derives its values in a discrete-time fashion for

a given fixed value of t' E .. Of course, there are an uncountable number

of points in r, hence we can imagine x(t) as being generated by an uncountable
number of discrete-time systems.

When we simulate our results on a digital computer, computations are
made every T sec. at discrete time points. Consequently, on a digital com-

puter, x(t) is generated by a finite number of discrete-time systems which

operate in parallel.

7. We have derived [19] the minimum-variance state estimator for UCFE

x(t + T) = A x(t) + B me(t) + w(t) (10)

and its associated measurement equation

=t) - H x(t) + n(t) (11)

Let 1(t) denote the minimum-variance estimate of x(t) based on all
measurements in y(X): 0 s X r t, t E R]. We have shown that for any

fixed t' E. [0, T), x(t), where t - t' + MT (M - 1, 2, ...), is given
by the usual discrete-time Kalman filter equations (Ref. J, for example)

with t' considered the initial starting time. Of course, to obtain x(t)

- -11-
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for all t E R we would need an uncountable number of discrete-tim Kalman

filters; but, imposing a mesh on ; (with grid size equal to data sampling

rate) leads to a finite number of Kalman filters which operate in parallel.

To the best knowledge of the author this is the first estimation theory

result that has led to a natural form of parallel data processing.

8. We have developed an extended minimum-variance estimator for

simultaneous estimation of states and parameters (i.e., reflection co-

efficients) in a UCFE [20]. Simulation results were very disappointing.

Reasons for the disappointing results are explained in [20].

9. A simple inverse filter has been developed [21] to suppress

multiple reflections from a normal incidence synthetic seismogram. The

filter was developed by means of Mendel's Bremer Series Decomposition

[14) and the operator description of state space model of layered media

[12], and is given in terms of z-transfoms as

Yl(Z) = (z) (12)
r0

0

In this equation Y(z) is the synthetic seismogram measured by a sensor

located on the surface. That sensor receives reflected signals from a

layered media due to the normal incident input M(z) applied at the same

surface. Parameter r0 is the reflection coefficient of the surface.

Y1(z) is the output of the filter; it consists of the primary reflection

portion of the seismogram and some residual terms; i.e., Yl(z) - Yl(z)+y(z).

In general, the residual terms y(z) is relatively quite small, and Yl(Z)

is a good approximation of Yl(z). This filter is especially effective

when r0 is relatively large (as in most geophysical situations) in which

case y(z) is almost negligible compared with Yl(z). The filter requires

knowledge of the input wavefom M(z), surface reflection coefficient, rO ,
and measured seismogram Y(z). Observe that (12) represents a nonlinear

processing of the seismogram Y(z).

-12-



10. We have extended our normal incidence state space model to the

non-nomal Incidence case [22]. The non-normal incidence (NNI) state

space model is structurally the same as the normal incidence state space
model except that it has twice as many state variables. Because of mode
conversion in non-normal incidence, the scalar upgoing and downgoing waves
and travel times in each layer as well as reflection and transmission co-

efficients in each interface are replaced by a vector of upgoing and down-

going waves, a vector of travel times, and matrices of reflection and
transmission coefficients.

With this NNI model, we are able to generate synthetic seismograms

for a plane wave source, and more importantly, for a two-dimensional

point source.

11. We have developed a maximum-likelihood procedure for estimating

both the reflection coefficients and one-way travel times [23] for a
lossless layered media system in which the layers are non-equally spaced
(in time). It uses a state space model as its starting point, one that

is more general than (6) since now T is different for each layer (i.e.,

T1 0 T2 0 T3 0 ... * k 0 T). The only source of uncertainty is measurement
noise, n(t). Maximum-likelihood estimates of the parameters are obtained

in a layer-recursive format. In essence, first r1 and T, are determined

and layer 1 is stripped away; then r2 and T. are determined and layer 2

is stripped away; etc. To the best of our knowledge, this is the first

time that both reflection coefficients and travel times have been simul-

'4 taneously estimated in an optimal manner.

12. We have surveyed approaches to solving inverse problems for

lossless layered media systems [24].

13. A Kunetz equation is often used as the starting point in the

development of solutions for the inversion of one-dimensional, noise-free,

normal incident seismograms, for which 1r01 1 r0 is the surface

reflection coefficient). We have demonstrated a need for a Kunetz-type

equation in which filtered signals can be used, so that noise effects

(which are always present in real data) can be reduced. Furthermore, we

j -13-
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have shown that an infinite numberof Kunetz-type equations exist for the

lossless wave equation in layered media. Finally, we have shown that it

is indeed valid to formulate and solve the inverse problem using filtered

signals [25].

14. We have developed a unified procedure for estimating reflection

coefficients of lossless layered media systems from noise seismic data

[26]. Our procedure is a generalization of work described in [18] to the

cases of source and sensor either at the surface or in the first layer

(e.g., a water layer). We have handled these cases simultaneously, since,

conceptually at least, they are similar.

Our procedure is to: (1) write state equations which describe the

temporal evolution of all upgoing and downgoing signals; (2) derive an
autoregressive-like equation for basement signal dK4l(t); (3) establish a

parameter estimation problem for estimating the coefficients in the

dK+l(t) equation, and generate the Normal equations which result from

solution of that problem; (4) express the Normal equations in terms of
measurable signals, through use of a Kunetz equation; and (5) study

conditions for which the Normal equation can be solved, as well as proper-

ties of the solution.

Our procedure is constructive and during the study of its five steps

we have provided answers to the following questions: (1) Why do we direct

our attention at an equation for the unmeasurable basement signal, dK+l(t),

rather than the measurable seismogram signal?; (2) What is the real role

of the Kunetz equation?; (3) Where in the procedure is it necessary to

distinguish the cases of source and sensor at the surface versus source
and sensor in the first layer?; (4) Why is deconvolution necessary?; (5)
Why is the solution limited to cases for which the amplitude of the surface

reflection coefficient is unity?; and (6) Why is the solution so sensitive

to noise?

15. We have sumarized our work on uniform causal functional

equations (UCFE) [27], (10) and (11). Because a UCFE is isomorphic to an

uncountable number of discrete-time systems, each one initialized at

t' E r a [0, TJ, we have been led to a very simple proof of a widely used

fact that UCFE (10) is properly initialized by L(a), o E ,.
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16. We have continued work on Habibi-Ashrafi's [23] maximum-likelihood

procedure for estimating reflection coefficients and detecting one-way

travel times [28] (in all of our 6ther studies travel time T is assumed

known, and all layers have the same travel time). We are especially

interested in making connections between his results and our suboptimal

results [26], when his results are specialized to the case of uniform travel

time.

17. We have developed a Bremer series decomposition for the NNI case

and have also designed approximate filters for suppression of multiple

reflections [29,30]. These filters are based on the algebraic structure of

the NNI Brmer series decomposition.

D. Miscellaneous

1. It is common in system modeling that a number of parameters are

not known precisely but will be detemined later from empirical data or by

subsequent design decisions. It is therefore important to study such

structured systems, and in [31] we have derived necessary and sufficient

conditions for the structural controllability of multi-input structured

linear systems. The methods used in [31] are substantially simpler than

previous approaches and rely on the properties of the interconnection of

sub-systems which is appropriate in the study of large scale systems.

2. We have demonstrated [32] that the spacing parameter, which

C appears in many stochastic approximation identification algorithms ([K] and

[L], for example) is unnecessary. Those algorithms, written as

e(k+J,) -e(k) +

where I is the spacing parameter, and k is chosen as an integer multiple

of 1, should be written as

whrke1) -(k) .,

where k-O,1, ..
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V. INTERACTIONS

The following papers which are listed in Section III were presented

at major technical conferences: [21, [4], [8], [91, [10), [11], [121.

[16], [171, [18), [19], [201, [211, [22], [24], [26], [30].

Additionally, Dr. Mendel presented the following talks, which were

based (all, or In part) on research supported by this grant:

1. "Multistage Least-Squares Parameter Estimation: An Approach to

Modeling Large Scale Systems," presented to Systems Engineering/

Operations Research Seminar at the Univ. of California, Irvine,

May 29, 1974.

2. "State Space Models of Layered Media," presented to Systems

Science Seminar, Univ. of California, San Diego, Feb. 2, 1977.

3. "Estimation of Reflection Coefficients for Lossless Layered

Systems," Univ. of Houston, E.E. Dep't. Seminar, March 5, 1979;

EE Systems Seminar, USC, April 16, 1979; and Eindhoven Univ. of

Technology, Eindhoven, The Netherlands, Oct. 2, 1979.
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.4

VI. NEW DISCOVERIES AND SPECIFIC APPLICATIONS STEMMING FROM
THE RESEARCH EFFORT

No patents were obtained. The following represent new discoveries:
(1) generalization of Friedland's [A] bias estimation technique to parti-

tioned dynamical systems [6, 7]; (2) state space models for layered media
systems [10, 11, 12, 13, 22]; (3) a state space Bremuer series decomposi-
tion [11, 14, 29]; and (4) a maximum-likelihood procedure for estimating

both the reflection coefficients and travel times for a lossless layered

media systm [23, 28].

All of our work described in Section II.C is applicable to reflection
seismology for oil and gas exploration.
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